Capsaicin induces theta-band synchronization between gustatory and autonomic insular cortices.
نویسندگان
چکیده
In the insular cortex, the primary gustatory area caudally adjoins the primary autonomic area that is involved in visceral sensory-motor integration. However, it has not been addressed whether neural activity in the gustatory insula (Gu-I) is coordinated with that in the autonomic insula (Au-I). We have demonstrated that TRPV1 activation in Gu-I induces theta-band synchronization between Gu-I and Au-I in rat slice preparations. Electron-microscopic immunohistochemistry revealed that TRPV1 immunoreactivity was much higher in Gu-I than in Au-I, and was mostly detected in dendritic spines receiving asymmetrical synapses. Whole-cell voltage-clamp recordings revealed that, in Gu-I, capsaicin-induced currents in layer 3 (L3) pyramidal cells (PCs) displayed no apparent desensitization, while those in layer 5 (L5) PCs displayed Ca(2+)-dependent desensitization, suggesting that L3 and L5 PCs respond differentially to TRPV1 activation. Voltage-sensitive dye imaging demonstrated that TRPV1 activation in Gu-I can alter an optical response with a monophasic and columnar temporospatial pattern evoked within Gu-I into an oscillatory one extending over Gu-I and Au-I. Power and cross-power spectral analyses of optical responses revealed theta-band synchronization between Gu-I and Au-I. Whole-cell current-clamp recordings demonstrated that such theta-band waves were mediated by sustained rhythmic firings at 4 and 8 Hz in L3 and L5 PCs, respectively. These results strongly suggested that theta-band oscillatory neural coordination between Gu-I and Au-I was induced by two distinct TRPV1-mediated theta-rhythm firings in L3 and L5 PCs in Gu-I. This network coordination induced by TRPV1 activation could be responsible for autonomic responses to tasting and ingesting spicy foods.
منابع مشابه
Accumulation of SNAP25 in mouse gustatory and somatosensory cortices in response to food and chemical stimulation
Food intake stimuli, including taste, somatosensory, and tactile stimuli, are received by receptors in the oral cavity, and this information is then transferred to the cerebral cortex. Signals from recently ingested food during the weaning period can affect synaptic transmission, resulting in biochemical changes in the cerebral cortex that modify gustatory and somatosensory nervous system plast...
متن کاملAsymmetrical intersection between the middle cerebral artery and rhinal vein suggests asymmetrical gustatory cortex location in rodent hemispheres
The rodent gustatory cortex is located in the anterior part of the insular cortex, which is near the dorsal part of the rhinal vein (RHV) and the intersection of the anterior and posterior regions of the middle cerebral artery (MCA). Thus, the intersection between the RHV and MCA is used as a landmark for the rodent gustatory cortex. In our previous study, we employed functional magnetic resona...
متن کاملDevelopmental Changes of BOLD Signal Correlations with Global Human EEG Power and Synchronization during Working Memory
In humans, theta band (5-7 Hz) power typically increases when performing cognitively demanding working memory (WM) tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent) signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the le...
متن کاملGustatory Imagery Reveals Functional Connectivity from the Prefrontal to Insular Cortices Traced with Magnetoencephalography
Our experience and prejudice concerning food play an important role in modulating gustatory information processing; gustatory memory stored in the central nervous system influences gustatory information arising from the peripheral nervous system. We have elucidated the mechanism of the "top-down" modulation of taste perception in humans using functional magnetic resonance imaging (fMRI) and dem...
متن کاملReward-related activity in the medial prefrontal cortex is driven by consumption
An emerging literature suggests that the medial prefrontal cortex (mPFC) is crucial for the ability to track behavioral outcomes over time and has a critical role in successful foraging. Here, we examine this issue by analyzing changes in neuronal spike activity and local field potentials in the rat mPFC in relation to the consumption of rewarding stimuli. Using multi-electrode recording method...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 32 39 شماره
صفحات -
تاریخ انتشار 2012